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Recognizing inverse problems...

* How to relate (indirect) observations to physical

parameters and models?

simple example =
linear regression
(solve with least squares) o




Inverse problem examples
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Inverse problems

G,(m)=d
7 \
“forward” operator observed data

model parameters

Given a set of data d, estimate m
(or, estimate m and G,)

. Formalize the process of inference. “Finding unknown
causes based on their effects [Alifanov]”



Inverse problems

* Why are they difficult?

— G7 often non-local, non-causal.

=> Classically ill-posed:

1 No solution may match the data (existence)
- linear case, G € R™": 3 a non-trivial data nullspace N(G')

2 Many solutions may match the data (uniqueness)

- linear case: 3 a non-trivial model nullspace N(G); more likely when data
is sparse or degenerate relative to dim(m)

3 lll-conditioning or instability: Small changes in data d
can lead to large changes in m
- linear case: singular values o,(G) decay rapidly towards zero

=> result: sensitivity to noise



Noise and ill-conditioning

« Example: de-convolve ground acceleration from seismometer output
[from ABTO04]
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Deterministic approaches

Usual approach: regularization + optimization

Regularization: impose smoothness, positivity, maximum
entropy, efc...

Example: Tikhonov-type regularization

minimize J = HG(m) — dHi + aHLmHi

3

e.g., a roughening matrix L
Drawbacks:

— How to choose L, «, etc? Regularization can be somewhat
arbitrary.

— Regqularization introduces bias, destroys consistency.

— No meaningful uncertainty/confidence intervals on the
resulting m.



Outline

2 Bayesian solution of inverse problems
e Formulation; Bayesian inference

e Results: source inversion under transient diffusion

3 New computational tools for Bayesian inversion
 Spectral representations of stochastic processes
 Polynomial chaos in Bayesian inference
 Results: accelerated MC and MCMC simulation

4 Extensions



Bayesian inference for IPs

 Letthe model m be a random variable

« Bayes’ theorem: likelihood

function L(m) :
prior

] p(d|m)p(m) /distribution
fp(d‘m)p m)dm

posterior / ,
distribution \ evidence

(here just a normalizing const)

 Compared to classical approaches:

— Not just a single value for m, but a probability density
. posterior = a COMPLETE description of uncertainty

— Additional information incorporated through the prior (expert
judgment, additional experiments, physical constraints, etc...)

— No regularization parameter per se



Likelihoods, priors, &
hyperparameters

« Common shorthand for Bayes theorem:
% (m) % plaim)p, ()

» Likelihood function: L(m) = p(djm)
(how well does the model support the data?)

— Example: deterministic forward problem G(m); uncorrelated additive
measurement + model errors n; ~p, (§)

d,=(Gm),+n, — L(m)=]]p,((G(m),-d,)
— Common choice: p, = N(0,0?) |
— Alternate interpretation:

(d,. +1) ~ p,(d) — L(m)=p,(G(m))



Likelihoods, priors, &
hyperparameters

Prior p,.(m) comes from physical constraints, additional
knowledge; can be uninformative.

Hyperparameters ¢: what if we don’t know some aspects of the
noise/priors:

- ex:p, = N(0,0%), 0% unknown

p(m.gld) = p(dlm.¢) p(mle) p(9)

The posterior density 7(m)= p(m|d) IS the full Bayesian
solution to the inverse problem!

Computational challenge: how to extract information from the
unnormalized posterior density?

1= [ f(m)p(m|d)dm

What if the forward model is expensive?




Source inversion— a model problem
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Source inversion

« To demonstrate, make some simplifications:

— Consider only one source

— Fix the source strength s;, Gaussian width o;, and shutoff
time t;

— Goal: infer the source location y = (x,y) from a small set of
noisy measurements

. This yields a 2-D posterior we can visualize...

* Measurement noise/error: n, ~N(0,0.2)
* Priors: (x,y) = (my,m,) ~ U(0,1)



Forward simulation
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Forward simulation
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Forward simulation
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Posterior density

« 3x3 grid of sensors; measure at t ={0.1, 0.2, 0.3}
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Posterior density

* Remove data, use more distant measurement times—
make the problem more ill-conditioned.

=> pbroadens the posterior

0=0.2;d=n+ G(mo); sensors at t=0.2,0.3 0=0.2;d=n+ G(mo); sensors at t=0.35; SAMPLE 2
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Posterior density

lll-conditioning = greater sensitivity to data (noise) realization

0=0.2;d=n+ G(mo); sensors at t=0.35; SAMPLE 3
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Posterior density

Add more sensors — more precise knowledge;
reduce ill-conditioning

0=0.2;d=n+ G(mo); sensors at t=0.35; 11x11 sensor grid
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Posterior density

Non-unique solutions:
What if we had only a 1-D array of sensors? Place 3 sensors along
the y= 0- 5 I I n e : 0=0.2;d=n+ G(mo); 1-D distribution of sensors at t=0.2
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Outline

Inverse problems

Bayesian solution of inverse problems
 Formulation; Bayesian inference
e Results: source inversion under transient diffusion

Computational tools for Bayesian inversion
 Spectral representations of stochastic processes
 Polynomial chaos in Bayesian inference
 Results: accelerated MC and MCMC simulation

Extensions



Computational tools for
Bayesian inference

Real (i.e., high-dimensional) problems—what information to
extract from the posterior?

— Posterior means, variances, higher moments:

[[f] ff(m)n(m)dm
Elf]- ]~ [a(m)dm

— Correlations, e.g., Cov(m,-,mj)

— Marginal distributions p(m)

— Posterior “movie” (draw samples from the posterior)

How to do this effectively?

— Quadrature: N, . = O(n9), prohibitive for large d.

— Cubature (“sparse quadrature”): somewhat better scaling

— Sampling: Monte Carlo, Markov chain Monte Carlo (MCMC)

Challenge: posterior evaluations are expensive
(forward problem)




Spectral rep’n of random variables

Let (Q,U,P) be a probability space, X : Q@ — R a square-integrable
random variable. Then

X(w)=aJ,+ iall“l(f;‘i1 ) + Ezailizrz(fgil £ ) .

— where {&(w)} " are orthonormal i.i.d. random variables
— and {¥, (&)} are orthogonal multivariate polynomials:

(W, W) = [W(E)W,(§)dP () = 6,(P})

Q

= a polynomial chaos expansion (PCe)



Spectral rep’n of random variables

Many families of polynomials + distributions (Hermite + Gaussian,
Legendre + Uniform, ...)

Truncate expansion at order p {I“O,...,Fp} and dimension n {&,.....§,}

(n+p)!
n!p!
Orthogonality: Galerkin projection determines spectral coefficients
(G(X)¥,)

8k <1Pk2>

Pseudo-spectral construction & other approaches for non-
polynomial funcs; implemented in a library for “stochastic
arithmetic.”

Primarily used in uncertainty quantification: structural,
thermofluid, chemical systems [Ghanem, LeMaitre, Najm,
Karniadakis]

= {W ()} where P+1=




PCe in Bayesian inference

* Write a PCe for m ~ prior:

Ami=zﬁ1i,kqjk(§) - G |- dj=2dj,klpk(§)

k=0

- d,: spectral representation of the output of the forward model
(compute once!)



PCe in Bayesian inference

« Draw samples &Y from the distribution of &:

— m(§) is thus sampled from its prior
— Integrate over the posterior without repeated forward solutions:

1[f]= [ fm)Lm)p, (m)dm

~ 5 2| FmEN o, (- dpe &)
N “= i

* More generally, this corresponds to a change of variables

m = g(§):
£ £ (m)L(m)p,,(m)dm = f f(8(8))L(8(8))p..(8(8)) |det(Dg)] d&

C = to the range of m

[1]:

where g is a diffeomorphism mapping



PCe in Bayesian inference

Computational efficiency—partition the range of m into
non-overlapping sets M':

P,(m) ={

pm(m) me M’
0 me&E M

Put m=g'(£) on each subdomain.

Partitioning can be adaptive [LeMaitre 2004; extends to
wavelets...].



Source inversion
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=> Partition the support of the prior into 4 quadrants; solve
the stochastic spectral forward problem on each domain.



Pdfs at measurement points

* Predicted value of the scalar field at (x,y) = (0,0); t = 0.05
« Convergence with respect to order p

direct
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* Prior uniform on lower left quadrant of physical domain



Pdfs at measurement points

* Predicted value of the scalar field at (x,y) = (0,0); t = 0.15
« Convergence with respect to order p
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 Compare times: sensitivity information contained in the PCe...



Surface response and error

» Predicted value of the scalar field at (x,y) = (0.0,0.5); t = 0.15:

dyy(8), PCe
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Surface response and error
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Posterior density

3x3 grid of sensors; measure at t = {0.05, 0.15}; d from noisy
observations of a source at (x,y) = (0.25,0.75).
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Posterior density

3x3 grid of sensors; measure at t = {0.05, 0.15}; d from noisy
observations of a source at (x,y) = (0.25,0.75).
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Posterior density

3x3 grid of sensors; measure at t = {0.05, 0.15}; d from noisy
observations of a source at (x,y) = (0.25,0.75).
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Monte Carlo speedup

« Posterior mean: total computational time vs number of samples
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Per-sample cost
reduced by 2-3
orders of
magnitude!!



Monte Carlo speedup

time [sec]

10

TOTAL computational time vs relative standard error

direct evaluation
| = = = PCe, p=6

Var[l

n

O,2

0,2
|—=— where
n

Var, [ f (m)L(m)]



MCMC

Construct a Markov chain of samples m® such that, after some

burn-in period b, samples are being drawn from the posterior
distribution (m)

— Markov chain defined by transition kernel K(m
— mis the stationary distribution: [ z(m)K(m"*"
How? [Metropolis 1953, Hastings 1970, Tierney 1995]
— Proposal distribution g(y|m, )

— Acceptance probability 0 < a<1:

7(y)a(m,)y) )

(1)
(t+D)] 0

m)dm =y (m)

a(m,,y)= min(l, J’L’(mt)Q(y‘mf)

— Acceptance = m®*") = y; otherwise m®*") = m()
Ergodic average:

E[f]=f, =~ S fom)

t=b+1



MCMC

Why use MCMC?

— Directly “simulate” the posterior— more efficient sampling
— No normalization

— Automatic marginalization

Under certain conditions (irreducibility, recurrence)
— SLLN:  f,—=—E_[f]

- CLT:  +n(f, - E.[f])—*—=N(0¢?)

o 2? y(s) where (s)= En[(m(t) = (m))(m*" - <m>)]

For difficult distributions, diagnosing/verifying convergence still
requires practical experience...



MCMC

Apply random-walk Metropolis to the PC-transformed problem:
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MCMC

Mixing, good and bad:
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MCMC

« Marginal distributions via kernel density estimation:

samples from

(E0:51)

0.6




Extending the Bayesian framework

* Inversion from forward models with additional parametric
uncertainty (mp):

d ~ G(ml,mp) e.g., uncertain diffusivity

~

p(ml’mP ‘d) X p(d‘ml’mP )p(ml )p(mp)

fdmp » 77(m,) — posterior on m,

— Propagate both p(m,) and p(m,) with PCe

* Uncertain forward models—another approach:
F(dm,) — L(m)= [ p,(d)F(dm,)dd

— The exact forward model is now a special case:
F(dm,)=8(d - G(m))



Conclusions

« Bayesian inference for inverse problems

— A complete approach to noisy data, incomplete data, ill-conditioning,
and stochastic forward problems.

— A quantitative description of uncertainty in the inverse result.

« Accelerating Bayesian inverse problem solutions with PCe:
— Spectral representation of random variables; Galerkin projection.

— Propagate prior uncertainty through forward model; rapid sampling
by evaluating PCe

— Choice of basis, order, decomposition of the prior support.
— Sampling strategies (MC, MCMC)

« Demonstrate w/source inversion in transient diffusion



Ongoing work

« Larger problems, more complex source inversion:
— Multiple sources, additional uncertain source parameters
— PCe approaches for inverse problems on continuous fields
— Add convective transport!

* Inverse problems in disease propagation
(with J. Ray, K. Devine, P. Fast)

« Structural inference: building models of biological kinetic
networks (e.g., gene regulatory networks from microarray
data)



